

Chapter 8

Code and XAML in harmony

A code file and a XAML file always exist as a pair. The two files complement each other. Despite being

referred to as the “code-behind” file to the XAML, very often the code is prominent in taking on the

more active and interactive parts of the application. This implies that the code-behind file must be able

to refer to elements defined in XAML with as much ease as objects instantiated in code. Likewise, ele-

ments in XAML must be able to fire events that are handled in code-based event handlers. That’s what

this chapter is all about.

But first, let’s explore a couple of unusual techniques for instantiating objects in a XAML file.

Passing arguments

When you run an application containing a XAML file, each element in the XAML file is instantiated with

a call to the parameterless constructor of the corresponding class or structure. The load process contin-

ues with initialization of the resultant object by setting properties from attribute values. This seems rea-

sonable. However, developers using XAML sometimes have a need to instantiate objects with construc-

tors that require arguments or by calling a static creation method. These needs usually don’t involve

the API itself, but instead involve external data classes referenced by the XAML file that interact with

the API.

The 2009 XAML specification introduced an x:Arguments element and an x:FactoryMethod at-

tribute for these cases, and Xamarin.Forms supports them. These techniques are not often used in ordi-

nary circumstances, but you should see how they work in case the need arises.

Constructors with arguments
To pass arguments to a constructor of an element in XAML, the element must be separated into start

and end tags. Follow the start tag of the element with x:Arguments start and end tags. Within those

x:Arguments tags, include one or more constructor arguments.

But how do you specify multiple arguments of common types, such as double or int? Do you sep-

arate the arguments with commas?

No. Each argument must be delimited with start and end tags. Fortunately, the XAML 2009 specifi-

cation defines XML elements for common basic types. You can use these tags to clarify the types of el-

ements, to specify generic types in OnPlatform, or to delimit constructor arguments. Here’s the com-

plete set supported by Xamarin.Forms. Notice that they duplicate the .NET type names rather than the

C# type names:

Chapter 8 Code and XAML in harmony 157

 x:Object

 x:Boolean

 x:Byte

 x:Int16

 x:Int32

 x:Int64

 x:Single

 x:Double

 x:Decimal

 x:Char

 x:String

 x:TimeSpan

 x:Array

 x:DateTime (supported by Xamarin.Forms but not the XAML 2009 specification)

You’ll be hard-pressed to find a use for all of these, but you’ll certainly discover uses for some of them.

The ParameteredConstructorDemo sample demonstrates the use of x:Arguments with argu-

ments delimited by x:Double tags using three different constructors of the Color structure. The con-

structor with three parameters requires red, green, and blue values ranging from 0 to 1. The construc-

tor with four parameters adds an alpha channel as the fourth parameter (which is set here to 0.5), and

the constructor with a single parameter indicates a gray shade from 0 (black) to 1 (white):

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ParameteredConstructorDemo.ParameteredConstructorDemoPage">

 <StackLayout>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color>

 <x:Arguments>

 <x:Double>1</x:Double>

 <x:Double>0</x:Double>

 <x:Double>0</x:Double>

 </x:Arguments>

 </Color>

Chapter 8 Code and XAML in harmony 158

 </BoxView.Color>

 </BoxView>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color>

 <x:Arguments>

 <x:Double>0</x:Double>

 <x:Double>0</x:Double>

 <x:Double>1</x:Double>

 <x:Double>0.5</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color>

 <x:Arguments>

 <x:Double>0.5</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 </StackLayout>

</ContentPage>

The number of elements within the x:Arguments tags, and the types of these elements, must match

one of the constructors of the class or structure. Here’s the result:

Chapter 8 Code and XAML in harmony 159

The blue BoxView is light against the light background and dark against the dark background because

it’s 50 percent transparent and lets the background show through.

Can I call methods from XAML?
At one time, the answer to this question was “Don’t be ridiculous,” but now it’s a qualified “Yes.” Don’t

get too excited, though. The only methods you can call in XAML are those that return objects (or val-

ues) of the same type as the class (or structure) that defines the method. These methods must be pub-

lic and static. They are sometimes called creation methods or factory methods. You can instantiate an

element in XAML through a call to one of these methods by specifying the method’s name using the

x:FactoryMethod attribute and its arguments using the x:Arguments element.

The Color structure defines seven static methods that return Color values, so these qualify. This

XAML file makes use of three of them:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="FactoryMethodDemo.FactoryMethodDemoPage">

 <StackLayout>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color x:FactoryMethod="FromRgb">

 <x:Arguments>

 <x:Int32>255</x:Int32>

 <x:Int32>0</x:Int32>

Chapter 8 Code and XAML in harmony 160

 <x:Int32>0</x:Int32>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color x:FactoryMethod="FromRgb">

 <x:Arguments>

 <x:Double>0</x:Double>

 <x:Double>1.0</x:Double>

 <x:Double>0</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 <BoxView WidthRequest="100"

 HeightRequest="100"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <BoxView.Color>

 <Color x:FactoryMethod="FromHsla">

 <x:Arguments>

 <x:Double>0.67</x:Double>

 <x:Double>1.0</x:Double>

 <x:Double>0.5</x:Double>

 <x:Double>1.0</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 </StackLayout>

</ContentPage>

The first two static methods invoked here are both named Color.FromRgb, but the types of ele-

ments within the x:Arguments tags distinguish between int arguments that range from 0 to 255 and

double arguments that range from 0 to 1. The third one is the Color.FromHsla method, which cre-

ates a Color value from hue, saturation, luminosity, and alpha components. Interestingly, this is the

only way to define a Color value from HSL values in a XAML file by using the Xamarin.Forms API.

Here’s the result:

Chapter 8 Code and XAML in harmony 161

The x:Name attribute

In most real applications, the code-behind file needs to reference elements defined in the XAML file.

You saw one way to do this in the CodePlusXaml program in the previous chapter: If the code-behind

file has knowledge of the layout of the visual tree defined in the XAML file, it can start from the root

element (the page itself) and locate specific elements within the tree. This process is called “walking the

tree” and can be useful for locating particular elements on a page.

Generally, a better approach is to give elements in the XAML file a name similar to a variable name.

To do this you use an attribute that is intrinsic to XAML, called Name. Because the prefix x is almost uni-

versally used for attributes intrinsic to XAML, this Name attribute is commonly referred to as x:Name.

The XamlClock project demonstrates the use of x:Name. Here is the XamlClockPage.xaml file con-

taining two Label controls, named timeLabel and dateLabel:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="XamlClock.XamlClockPage">

 <StackLayout>

 <Label x:Name="timeLabel"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="EndAndExpand" />

 <Label x:Name="dateLabel"

 HorizontalOptions="Center"

 VerticalOptions="StartAndExpand" />

Chapter 8 Code and XAML in harmony 162

 </StackLayout>

</ContentPage>

The rules for x:Name are the same as for C# variable names. (You’ll see why shortly.) The name must

begin with a letter or an underscore and can contain only letters, underscores, and numbers.

Like the clock program in Chapter 5, XamlClock uses Device.StartTimer to fire a periodic event

for updating the time and date. Here’s the XamlClockPage code-behind file:

namespace XamlClock

{

 public partial class XamlClockPage

 {

 public XamlClockPage()

 {

 InitializeComponent();

 Device.StartTimer(TimeSpan.FromSeconds(1), OnTimerTick);

 }

 bool OnTimerTick()

 {

 DateTime dt = DateTime.Now;

 timeLabel.Text = dt.ToString("T");

 dateLabel.Text = dt.ToString("D");

 return true;

 }

 }

}

This timer callback method is called once per second. The method must return true to continue the

timer. If it returns false, the timer stops and must be restarted with another call to Device.Start-

Timer.

The callback method references timeLabel and dateLabel as though they were normal variables

and sets the Text properties of each:

Chapter 8 Code and XAML in harmony 163

This is not a visually impressive clock, but it’s definitely functional.

How is it that the code-behind file can reference the elements identified with x:Name? Is it magic?

Of course not. The mechanism is very evident when you examine the XamlClockPage.xaml.g.cs file that

the XAML parser generates from the XAML file as the project is being built:

//--

// <auto-generated>

// This code was generated by a tool.

// Runtime Version:4.0.30319.42000

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code is regenerated.

// </auto-generated>

//--

namespace XamlClock {

 using System;

 using Xamarin.Forms;

 using Xamarin.Forms.Xaml;

 public partial class XamlClockPage : global::Xamarin.Forms.ContentPage {

 [System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.XamlG",

 "0.0.0.0")]

 private global::Xamarin.Forms.Label timeLabel;

 [System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.XamlG",

 "0.0.0.0")]

 private global::Xamarin.Forms.Label dateLabel;

Chapter 8 Code and XAML in harmony 164

 [System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.XamlG",

 "0.0.0.0")]

 private void InitializeComponent() {

 this.LoadFromXaml(typeof(XamlClockPage));

 timeLabel = this.FindByName<global::Xamarin.Forms.Label>("timeLabel");

 dateLabel = this.FindByName<global::Xamarin.Forms.Label>("dateLabel");

 }

 }

}

It might be a little hard to see because of the attributes and fully qualified types, but as the build-time

XAML parser chews through the XAML file, every x:Name attribute becomes a private field in this gen-

erated code file. This allows code in the code-behind file to reference these names as though they were

normal fields—which they definitely are. However, the fields are initially null. Only when Initial-

izeComponent is called at run time are the two fields set via the FindByName method, which is de-

fined in the NameScopeExtensions class. If the constructor of your code-behind file tries to reference

these two fields prior to the InitializeComponent call, they will have null values.

This generated code file also implies another rule for x:Name values that is now very obvious but

rarely stated explicitly: the names cannot duplicate names of fields or properties defined in the code-

behind file.

Because these are private fields, they can be accessed only from the code-behind file and not from

other classes. If a ContentPage derivative needs to expose public fields or properties to other classes,

you must define those yourself.

Obviously, x:Name values must be unique within a XAML page. This can sometimes be a problem if

you’re using OnPlatform for platform-specific elements in the XAML file. For example, here’s a XAML

file that expresses the iOS, Android, and WinPhone properties of OnPlatform as property elements

to select one of three Label views:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

 <OnPlatform x:TypeArguments="View">

 <OnPlatform.iOS>

 <Label Text="This is an iOS device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.iOS>

 <OnPlatform.Android>

 <Label Text="This is an Android device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.Android>

 <OnPlatform.WinPhone>

 <Label Text="This is an Windows device"

Chapter 8 Code and XAML in harmony 165

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.WinPhone>

 </OnPlatform>

</ContentPage>

The x:TypeArguments attribute of OnPlatform must match the type of the target property exactly.

This OnPlatform element is implicitly being set to the Content property of ContentPage, and this

Content property is of type View, so the x:TypeArguments attribute of OnPlatform must specify

View. However, the properties of OnPlatform can be set to any class that derives from that type. The

objects set to the iOS, Android, and WinPhone properties can in fact be different types just as long as

they all derive from View.

Although that XAML file works, it’s not exactly optimum. All three Label views are instantiated and

initialized, but only one is set to the Content property of the ContentPage. The problem with this

approach arises if you need to refer to the Label from the code-behind file and you give each of them

the same name, like so:

The following XAML file does not work!

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

 <OnPlatform x:TypeArguments="View">

 <OnPlatform.iOS>

 <Label x:Name="deviceLabel"

 Text="This is an iOS device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.iOS>

 <OnPlatform.Android>

 <Label x:Name="deviceLabel"

 Text="This is an Android device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.Android>

 <OnPlatform.WinPhone>

 <Label x:Name="deviceLabel"

 Text="This is a Windows device"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 </OnPlatform.WinPhone>

 </OnPlatform>

</ContentPage>

This will not work because multiple elements cannot have the same name.

You could give them different names and handle the three names in the code-behind file by using

Chapter 8 Code and XAML in harmony 166

Device.OnPlatform, but a better solution is to keep the platform-specific markup as small as possi-

ble. In this example, all the Label properties are the same except for Text, so only the Text property

needs to be platform specific. Here’s the version of the PlatformSpecificLabels program that is in-

cluded with the sample code for this chapter. It has a single Label, and everything is platform inde-

pendent except for the Text property:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

 <Label x:Name="deviceLabel"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <Label.Text>

 <OnPlatform x:TypeArguments="x:String"

 iOS="This is an iOS device"

 Android="This is an Android device"

 WinPhone="This is a Windows device" />

 </Label.Text>

 </Label>

</ContentPage>

Here’s what it looks like:

The Text property is the content property for Label, so you don’t need the Label.Text tags in

the previous example. This works as well:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

Chapter 8 Code and XAML in harmony 167

 <Label x:Name="deviceLabel"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <OnPlatform x:TypeArguments="x:String"

 iOS="This is an iOS device"

 Android="This is an Android device"

 WinPhone="This is a Windows device" />

 </Label>

</ContentPage>

Custom XAML-based views

The ScaryColorList program in the previous chapter listed a few colors in a StackLayout using

Frame, BoxView, and Label. Even with just three colors, the repetitive markup was starting to look

very ominous. Unfortunately there is no XAML markup that duplicates the C# for and while loops, so

your choice is to use code for generating multiple similar items, or to find a better way to do it in

markup.

In this book, you’ll see several ways to list colors in XAML, and eventually, a very clean and elegant

way to do this job will become clear. But that requires a few more steps into learning Xamarin.Forms.

Until then, we’ll be looking at some other approaches that you might find useful in similar circum-

stances.

One strategy is to create a custom view that has the sole purpose of displaying a color with a name

and a colored box. And while we’re at it, let’s display the hexadecimal RGB values of the colors as well.

You can then use that custom view in a XAML page file for the individual colors.

What might a reference to such a custom view look like in XAML?

Or the better question is: How would you like it to look?

If the markup looked something like this, the repetition is not bad at all, and not so much worse

than explicitly defining an array of Color values in code:

<StackLayout>

 <MyColorView Color="Red" />

 <MyColorView Color="Green" />

 <MyColorView Color="Blue" />

 …

</StackLayout>

Well, actually, it won’t look exactly like that. MyColorView is obviously a custom class and not part of

the Xamarin.Forms API. Therefore, it cannot appear in the XAML file without a namespace prefix that is

defined in an XML namespace declaration.

With this XML prefix applied, there won’t be any confusion about this custom view being part of the

Xamarin.Forms API, so let’s give it a more dignified name of ColorView rather than MyColorView.

Chapter 8 Code and XAML in harmony 168

This hypothetical ColorView class is an example of a fairly easy custom view because it consists

solely of existing views—specifically Label, Frame, and BoxView—arranged in a particular way using

StackLayout. Xamarin.Forms defines a view designed specifically for the purpose of parenting such

an arrangement of views, and it’s called ContentView. Like ContentPage, ContentView has a Con-

tent property that you can set to a visual tree of other views. You can define the contents of the Con-

tentView in code, but it’s more fun to do it in XAML.

Let’s put together a solution named ColorViewList. This solution will have two sets of XAML and

code-behind files, the first for a class named ColorViewListPage, which derives from ContentPage

(as usual), and the second for a class named ColorView, which derives from ContentView.

To create the ColorView class in Visual Studio, use the same procedure as when adding a new

XAML page to the ColorViewList project: Right-click the project name in the Solution Explorer, and

select Add > New Item from the context menu. In the Add New Item dialog, select Visual C# >

Cross-Platform at the left and then Forms Xaml Page. Enter the name ColorView.cs. But right away,

before you forget, go into the ColorView.xaml file and change the ContentPage start and end tags to

ContentView. In the ColorView.xaml.cs file, change the base class to ContentView.

The process is a little easier in Xamarin Studio. From the tool menu for the ColorViewList project,

select Add > New File. In the New File dialog, select Forms at the left and Forms ContentView Xaml

(not Forms ContentPage Xaml). Give it a name of ColorView.

You’ll also need to create a XAML file and code-behind file for the ColorViewListPage class, as

usual.

The ColorView.xaml file describes the layout of the individual color items but without any actual

color values. Instead, the BoxView and two Label views are given names:

<ContentView xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ColorViewList.ColorView">

 <Frame OutlineColor="Accent">

 <StackLayout Orientation="Horizontal">

 <BoxView x:Name="boxView"

 WidthRequest="70"

 HeightRequest="70" />

 <StackLayout>

 <Label x:Name="colorNameLabel"

 FontSize="Large"

 VerticalOptions="CenterAndExpand" />

 <Label x:Name="colorValueLabel"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 </StackLayout>

 </Frame>

</ContentView>

Chapter 8 Code and XAML in harmony 169

In a real-life program, you’ll have plenty of time later to fine-tune the visuals. Initially, you’ll just want

to get all the named views in there.

Besides the visuals, this ColorView class will need a new property to set the color. This property

must be defined in the code-behind file. At first, it seems reasonable to give ColorView a property

named Color of type Color (as the earlier XAML snippet with MyColorView seems to suggest). But

the ColorView class needs to display the color name, and it can’t get the color name from a Color

value.

Instead, it makes more sense to define a property named ColorName of type string. The code-

behind file can then use reflection to obtain the static field of the Color class corresponding to that

name.

But wait: Xamarin.Forms includes a public ColorTypeConverter class that the XAML parser uses to

convert a text color name like “Red” or “Blue” into a Color value. Why not take advantage of that?

Here’s the code-behind file for ColorView. It defines a ColorName property with a set accessor

that sets the Text property of the colorNameLabel to the color name, and then uses ColorType-

Converter to convert the name to a Color value. This Color value is then used to set the Color

property of boxView and the Text property of the colorValueLabel to the RGB values:

public partial class ColorView : ContentView

{

 string colorName;

 ColorTypeConverter colorTypeConv = new ColorTypeConverter();

 public ColorView()

 {

 InitializeComponent();

 }

 public string ColorName

 {

 set

 {

 // Set the name.

 colorName = value;

 colorNameLabel.Text = value;

 // Get the actual Color and set the other views.

 Color color = (Color)colorTypeConv.ConvertFrom(colorName);

 boxView.Color = color;

 colorValueLabel.Text = String.Format("{0:X2}-{1:X2}-{2:X2}",

 (int)(255 * color.R),

 (int)(255 * color.G),

 (int)(255 * color.B));

 }

 get

 {

 return colorName;

 }

Chapter 8 Code and XAML in harmony 170

 }

}

The ColorView class is finished. Now let’s look at ColorViewListPage. The ColorViewList-

Page.xaml file must list multiple ColorView instances, so it needs a new XML namespace declaration

with a new namespace prefix to reference the ColorView element.

The ColorView class is part of the same project as ColorViewListPage. Generally, programmers

use an XML namespace prefix of local for such cases. The new namespace declaration appears in the

root element of the XAML file (like the other two) with the following format:

xmlns:local="clr-namespace:ColorViewList;assembly=ColorViewList"

In the general case, a custom XML namespace declaration for XAML must specify a common language

runtime (CLR) namespace—also known as the .NET namespace—and an assembly. The keywords to

specify these are clr-namespace and assembly. Often the CLR namespace is the same as the assem-

bly, as they are in this case, but they don’t need to be. The two parts are connected by a semicolon.

Notice that a colon follows clr-namespace, but an equal sign follows assembly. This apparent

inconsistency is deliberate: the format of the namespace declaration is intended to mimic a URI found

in conventional namespace declarations, in which a colon follows the URI scheme name.

You use the same syntax for referencing objects in external portable class libraries. The only differ-

ence in those cases is that the project also needs a reference to that external PCL. (You’ll see an exam-

ple in Chapter 10, “XAML markup extensions.”).

The local prefix is common for code in the same assembly, and in that case the assembly part is

not required:

xmlns:local="clr-namespace:ColorViewList"

For a XAML file in a PCL, you can include the assembly part to reference something in the same as-

sembly if you want but it’s not necessary. For a XAML file in an SAP, however, you must not include the

assembly part to reference a local class because there is no assembly associated with an SAP. The

code in the SAP is actually part of the individual platform assemblies, and those all have different

names.

Here’s the XAML for the ColorViewListPage class. The code-behind file contains nothing beyond

the InitializeComponent call:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:ColorViewList"

 x:Class="ColorViewList.ColorViewListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

Chapter 8 Code and XAML in harmony 171

 <ScrollView>

 <StackLayout Padding="6, 0">

 <local:ColorView ColorName="Aqua" />

 <local:ColorView ColorName="Black" />

 <local:ColorView ColorName="Blue" />

 <local:ColorView ColorName="Fuchsia" />

 <local:ColorView ColorName="Gray" />

 <local:ColorView ColorName="Green" />

 <local:ColorView ColorName="Lime" />

 <local:ColorView ColorName="Maroon" />

 <local:ColorView ColorName="Navy" />

 <local:ColorView ColorName="Olive" />

 <local:ColorView ColorName="Purple" />

 <local:ColorView ColorName="Pink" />

 <local:ColorView ColorName="Red" />

 <local:ColorView ColorName="Silver" />

 <local:ColorView ColorName="Teal" />

 <local:ColorView ColorName="White" />

 <local:ColorView ColorName="Yellow" />

 </StackLayout>

 </ScrollView>

</ContentPage>

This is not quite as odious as the earlier example seemed to suggest, and it demonstrates how you can

encapsulate visuals in their own XAML-based classes. Notice that the StackLayout is the child of a

ScrollView, so the list can be scrolled:

However, there is one aspect of the ColorViewList project that does not qualify as a “best practice.” It

is the definition of the ColorName property in ColorView. This should really be implemented as a

Chapter 8 Code and XAML in harmony 172

BindableProperty object. Delving into bindable objects and bindable properties is a high priority

and will be explored in Chapter 11, “The bindable infrastructure.”

Events and handlers

When you tap a Xamarin.Forms Button, it fires a Clicked event. You can instantiate a Button in

XAML, but the Clicked event handler itself must reside in the code-behind file. The Button is only

one of a bunch of views that exist primarily to generate events, so the process of handling events is

crucial to coordinating XAML and code files.

Attaching an event handler to an event in XAML is as simple as setting a property; it is, in fact, visu-

ally indistinguishable from a property setting. The XamlKeypad project is a XAML version of the Per-

sistentKeypad project from Chapter 6. It illustrates setting event handlers in XAML and handling these

events in the code-behind file. It also includes logic to save keypad entries when the program is termi-

nated.

If you take a look back at the constructor code of the SimplestKeypadPage or PersistentKey-

padPage classes, you’ll see a couple of loops to create the buttons that make up the numeric part of

the keypad. Of course, this is precisely the type of thing you can’t do in XAML, but look at how much

cleaner the markup in XamlKeypadPage is when compared with that code:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="XamlKeypad.XamlKeypadPage">

 <StackLayout VerticalOptions="Center"

 HorizontalOptions="Center">

 <Label x:Name="displayLabel"

 Font="Large"

 VerticalOptions="Center"

 HorizontalTextAlignment="End" />

 <Button x:Name="backspaceButton"

 Text="⇦"

 Font="Large"

 IsEnabled="False"

 Clicked="OnBackspaceButtonClicked" />

 <StackLayout Orientation="Horizontal">

 <Button Text="7" StyleId="7" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="8" StyleId="8" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="9" StyleId="9" Font="Large"

 Clicked="OnDigitButtonClicked" />

 </StackLayout>

Chapter 8 Code and XAML in harmony 173

 <StackLayout Orientation="Horizontal">

 <Button Text="4" StyleId="4" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="5" StyleId="5" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="6" StyleId="6" Font="Large"

 Clicked="OnDigitButtonClicked" />

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <Button Text="1" StyleId="1" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="2" StyleId="2" Font="Large"

 Clicked="OnDigitButtonClicked" />

 <Button Text="3" StyleId="3" Font="Large"

 Clicked="OnDigitButtonClicked" />

 </StackLayout>

 <Button Text="0" StyleId="0" Font="Large"

 Clicked="OnDigitButtonClicked" />

 </StackLayout>

</ContentPage>

The file is a lot shorter than it would have been had the three properties on each numeric Button

been formatted into three lines, but packing these all together makes the uniformity of the markup

very obvious and provides clarity rather than obscurity.

The big question is this: Which would you rather maintain and modify? The code in the Simplest-

KeypadPage or PersistentKeypadPage constructors or the markup in the XamlKeypadPage XAML

file?

Here’s the screenshot. You’ll see that these keys are now arranged in calculator order rather than

telephone order:

Chapter 8 Code and XAML in harmony 174

The backspace button has its Clicked event set to the OnBackspaceButtonClicked handler,

while the digit buttons share the OnDigitButtonClicked handler. As you’ll recall, the StyleId prop-

erty is often used to distinguish views sharing the same event handler, which means that the two event

handlers can be implemented in the code-behind file exactly the same as in the code-only program:

public partial class XamlKeypadPage

{

 App app = Application.Current as App;

 public XamlKeypadPage()

 {

 InitializeComponent();

 displayLabel.Text = app.DisplayLabelText;

 backspaceButton.IsEnabled = displayLabel.Text != null &&

 displayLabel.Text.Length > 0;

 }

 void OnDigitButtonClicked(object sender, EventArgs args)

 {

 Button button = (Button)sender;

 displayLabel.Text += (string)button.StyleId;

 backspaceButton.IsEnabled = true;

 app.DisplayLabelText = displayLabel.Text;

 }

 void OnBackspaceButtonClicked(object sender, EventArgs args)

 {

 string text = displayLabel.Text;

 displayLabel.Text = text.Substring(0, text.Length - 1);

Chapter 8 Code and XAML in harmony 175

 backspaceButton.IsEnabled = displayLabel.Text.Length > 0;

 app.DisplayLabelText = displayLabel.Text;

 }

}

Part of the job of the LoadFromXaml method called by InitializeComponent involves attaching

these event handlers to the objects instantiated from the XAML file.

The XamlKeypad project also includes the code that was added to the page and App classes in Per-

sistentKeypad to save the keypad text when the program is terminated. The App class in XamlKeypad

is basically the same as the one in PersistentKeypad.

Tap gestures

The Xamarin.Forms Button responds to finger taps, but you can actually get finger taps from any class

that derives from View, including Label, BoxView, and Frame. These tap events are not built into the

View class, but the View class defines a property named GestureRecognizers. Taps are enabled by

adding an object to this GestureRecognizers collection. An instance of any class that derives from

GestureRecognizer can be added to this collection, but undoubtedly the most useful is TapGes-

tureRecognizer.

Here’s how to add a TapGestureRecognizer to a BoxView in code:

BoxView boxView = new BoxView

{

 Color = Color.Blue

};

TapGestureRecognizer tapGesture = new TapGestureRecognizer();

tapGesture.Tapped += OnBoxViewTapped;

boxView.GestureRecognizers.Add(tapGesture);

TapGestureRecognizer also defines a NumberOfTapsRequired property with a default value of 1.

Set it to 2 to implement double taps.

To generate Tapped events, the View object must have its IsEnabled property set to true, its Is-

Visible property set to true (or it won’t be visible at all), and its InputTransparent property set to

false. These are all default conditions.

The Tapped handler looks just like a Clicked handler for the Button:

void OnBoxViewTapped(object sender, EventArgs args)

{

 …

}

As you know, the sender argument of an event handler is normally the object that fires the event,

Chapter 8 Code and XAML in harmony 176

which in this case would be the TapGestureRecognizer object. That would not be of much use. In-

stead, the sender argument to the Tapped handler is the view being tapped, in this case the BoxView.

That’s much more useful!

Like Button, TapGestureRecognizer also defines Command and CommandParameter properties;

these are used when implementing the MVVM design pattern, and they are discussed in a later chap-

ter.

TapGestureRecognizer also defines properties named TappedCallback and TappedCallback-

Parameter and a constructor that includes a TappedCallback argument. These are all deprecated

and should not be used.

In XAML, you can attach a TapGestureRecognizer to a view by expressing the GestureRecog-

nizers collection as a property element:

<BoxView Color="Blue">

 <BoxView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnBoxViewTapped" />

 </BoxView.GestureRecognizers>

</BoxView>

As usual, the XAML is a little shorter than the equivalent code.

Let’s make a program that’s inspired by one of the first standalone computer games.

The Xamarin.Forms version of this game is called MonkeyTap because it’s an imitation game. It

contains four BoxView elements, colored red, blue, yellow, and green. When the game begins, one of

the BoxView elements flashes, and you must then tap that BoxView. That BoxView flashes again fol-

lowed by another one, and now you must tap both in sequence. Then those two flashes are followed

by a third and so forth. (The original had sound as well, but MonkeyTap does not.) It’s a rather cruel

game because there is no way to win. The game just keeps on getting harder and harder until you lose.

The MonkeyTapPage.xaml file instantiates the four BoxView elements and a Button in the center

labeled “Begin”.

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MonkeyTap.MonkeyTapPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <BoxView x:Name="boxview0"

 VerticalOptions="FillAndExpand">

 <BoxView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnBoxViewTapped" />

 </BoxView.GestureRecognizers>

Chapter 8 Code and XAML in harmony 177

 </BoxView>

 <BoxView x:Name="boxview1"

 VerticalOptions="FillAndExpand">

 <BoxView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnBoxViewTapped" />

 </BoxView.GestureRecognizers>

 </BoxView>

 <Button x:Name="startGameButton"

 Text="Begin"

 Font="Large"

 HorizontalOptions="Center"

 Clicked="OnStartGameButtonClicked" />

 <BoxView x:Name="boxview2"

 VerticalOptions="FillAndExpand">

 <BoxView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnBoxViewTapped" />

 </BoxView.GestureRecognizers>

 </BoxView>

 <BoxView x:Name="boxview3"

 VerticalOptions="FillAndExpand">

 <BoxView.GestureRecognizers>

 <TapGestureRecognizer Tapped="OnBoxViewTapped" />

 </BoxView.GestureRecognizers>

 </BoxView>

 </StackLayout>

</ContentPage>

All four BoxView elements here have a TapGestureRecognizer attached, but they aren’t yet as-

signed colors. That’s handled in the code-behind file because the colors won’t stay constant. The colors

need to be changed for the flashing effect.

The code-behind file begins with some constants and variable fields. (You’ll notice that one of them

is flagged as protected; in the next chapter, a class will derive from this one and require access to this

field. Some methods are defined as protected as well.)

public partial class MonkeyTapPage

{

 const int sequenceTime = 750; // in msec

 protected const int flashDuration = 250;

 const double offLuminosity = 0.4; // somewhat dimmer

 const double onLuminosity = 0.75; // much brighter

 BoxView[] boxViews;

 Color[] colors = { Color.Red, Color.Blue, Color.Yellow, Color.Green };

 List<int> sequence = new List<int>();

 int sequenceIndex;

 bool awaitingTaps;

 bool gameEnded;

Chapter 8 Code and XAML in harmony 178

 Random random = new Random();

 public MonkeyTapPage()

 {

 InitializeComponent();

 boxViews = new BoxView[] { boxview0, boxview1, boxview2, boxview3 };

 InitializeBoxViewColors();

 }

 void InitializeBoxViewColors()

 {

 for (int index = 0; index < 4; index++)

 boxViews[index].Color = colors[index].WithLuminosity(offLuminosity);

 }

 …

}

The constructor puts all four BoxView elements in an array; this allows them to be referenced by a sim-

ple index that has values of 0, 1, 2, and 3. The InitializeBoxViewColors method sets all the Box-

View elements to their slightly dimmed nonflashed state.

The program is now waiting for the user to press the Begin button to start the first game. The same

Button handles replays, so it includes a redundant initialization of the BoxView colors. The Button

handler also prepares for building the sequence of flashed BoxView elements by clearing the se-

quence list and calling StartSequence:

public partial class MonkeyTapPage

{

 …

 protected void OnStartGameButtonClicked(object sender, EventArgs args)

 {

 gameEnded = false;

 startGameButton.IsVisible = false;

 InitializeBoxViewColors();

 sequence.Clear();

 StartSequence();

 }

 void StartSequence()

 {

 sequence.Add(random.Next(4));

 sequenceIndex = 0;

 Device.StartTimer(TimeSpan.FromMilliseconds(sequenceTime), OnTimerTick);

 }

 …

}

StartSequence adds a new random integer to the sequence list, initializes sequenceIndex to 0,

and starts the timer.

In the normal case, the timer tick handler is called for each index in the sequence list and causes

the corresponding BoxView to flash with a call to FlashBoxView. The timer handler returns false

Chapter 8 Code and XAML in harmony 179

when the sequence is at an end, also indicating by setting awaitingTaps that it’s time for the user to

imitate the sequence:

public partial class MonkeyTapPage

{

 …

 bool OnTimerTick()

 {

 if (gameEnded)

 return false;

 FlashBoxView(sequence[sequenceIndex]);

 sequenceIndex++;

 awaitingTaps = sequenceIndex == sequence.Count;

 sequenceIndex = awaitingTaps ? 0 : sequenceIndex;

 return !awaitingTaps;

 }

 protected virtual void FlashBoxView(int index)

 {

 boxViews[index].Color = colors[index].WithLuminosity(onLuminosity);

 Device.StartTimer(TimeSpan.FromMilliseconds(flashDuration), () =>

 {

 if (gameEnded)

 return false;

 boxViews[index].Color = colors[index].WithLuminosity(offLuminosity);

 return false;

 });

 }

 …

}

The flash is just a quarter second in duration. The FlashBoxView method first sets the luminosity for

a bright color and creates a “one-shot” timer, so called because the timer callback method (here

expressed as a lambda function) returns false and shuts off the timer after restoring the color’s

luminosity.

The Tapped handler for the BoxView elements ignores the tap if the game is already over (which

only happens with a mistake by the user), and ends the game if the user taps prematurely without

waiting for the program to go through the sequence. Otherwise, it just compares the tapped BoxView

with the next one in the sequence, flashes that BoxView if correct, or ends the game if not:

public partial class MonkeyTapPage

{

 …

 protected void OnBoxViewTapped(object sender, EventArgs args)

 {

 if (gameEnded)

 return;

 if (!awaitingTaps)

Chapter 8 Code and XAML in harmony 180

 {

 EndGame();

 return;

 }

 BoxView tappedBoxView = (BoxView)sender;

 int index = Array.IndexOf(boxViews, tappedBoxView);

 if (index != sequence[sequenceIndex])

 {

 EndGame();

 return;

 }

 FlashBoxView(index);

 sequenceIndex++;

 awaitingTaps = sequenceIndex < sequence.Count;

 if (!awaitingTaps)

 StartSequence();

 }

 protected virtual void EndGame()

 {

 gameEnded = true;

 for (int index = 0; index < 4; index++)

 boxViews[index].Color = Color.Gray;

 startGameButton.Text = "Try again?";

 startGameButton.IsVisible = true;

 }

}

If the user manages to “ape” the sequence all the way through, another call to StartSequence adds a

new index to the sequence list and starts playing that new one. Eventually, though, there will be a call

to EndGame, which colors all the boxes gray to emphasize the end, and reenables the Button for a

chance to try it again.

Here’s the program after the Button has been clicked and hidden:

Chapter 8 Code and XAML in harmony 181

I know, I know. The game is a real drag without sound.

Let’s take the opportunity in the next chapter to fix that.

